INSIGHTS INTO FUNCTIONAL TRAINING
PRINCIPLES, CONCEPTS, AND APPLICATION

Chuck Wolf, MS, FAFS

Foreword by Robert Masson, MD

On Target Publications
Santa Cruz, California
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>7</td>
</tr>
<tr>
<td>PREFACE</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>11</td>
</tr>
<tr>
<td>INSIGHTS INTO FUNCTIONAL TRAINING: PRINCIPLES, CONCEPTS, AND APPLICATION</td>
<td></td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td>21</td>
</tr>
<tr>
<td>A THREE-DIMENSIONAL JOINT-BY-JOINT APPROACH TO MOVEMENT</td>
<td></td>
</tr>
<tr>
<td>CHAPTER THREE</td>
<td>27</td>
</tr>
<tr>
<td>FUNCTIONAL ANATOMY—AN EVOLVING PERSPECTIVE</td>
<td></td>
</tr>
<tr>
<td>CHAPTER FOUR</td>
<td>75</td>
</tr>
<tr>
<td>WORKING AROUND THE JOINTS</td>
<td></td>
</tr>
<tr>
<td>CHAPTER FIVE</td>
<td>93</td>
</tr>
<tr>
<td>FLEXIBILITY HIGHWAYS: THE ROAD TO ENHANCED FUNCTIONAL PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>CHAPTER SIX</td>
<td>111</td>
</tr>
<tr>
<td>THE BIG MOVEMENT ROCKS—SIMPLY IMPORTANT</td>
<td></td>
</tr>
<tr>
<td>CHAPTER SEVEN</td>
<td>117</td>
</tr>
<tr>
<td>BLENDING TRADITION WITH FUNCTIONAL, INTEGRATED TRAINING</td>
<td></td>
</tr>
<tr>
<td>CHAPTER EIGHT</td>
<td>123</td>
</tr>
<tr>
<td>THE FUNCTIONAL ASSESSMENT</td>
<td></td>
</tr>
<tr>
<td>CHAPTER NINE</td>
<td>137</td>
</tr>
<tr>
<td>PREPROGRAMMING INSIGHTS</td>
<td></td>
</tr>
<tr>
<td>CHAPTER TEN</td>
<td>159</td>
</tr>
<tr>
<td>THE VARIABILITY OF PROGRAM DESIGN</td>
<td></td>
</tr>
<tr>
<td>CHAPTER ELEVEN</td>
<td>169</td>
</tr>
<tr>
<td>MOVEMENT TRAINING FOR SPECIAL POPULATIONS</td>
<td></td>
</tr>
<tr>
<td>CHAPTER TWELVE</td>
<td>197</td>
</tr>
<tr>
<td>PROGRAMMING AROUND JOINT ISSUES</td>
<td></td>
</tr>
<tr>
<td>CHAPTER THIRTEEN</td>
<td>205</td>
</tr>
<tr>
<td>USING THESE INSIGHTS IN YOUR WORK</td>
<td></td>
</tr>
<tr>
<td>APPENDIX ONE</td>
<td>209</td>
</tr>
<tr>
<td>OVERVIEW OF THE SIX FLEXIBILITY HIGHWAYS</td>
<td></td>
</tr>
<tr>
<td>APPENDIX TWO</td>
<td>215</td>
</tr>
<tr>
<td>HIP AND KNEE STRENGTHENING PROGRESSION</td>
<td></td>
</tr>
<tr>
<td>APPENDIX THREE</td>
<td>217</td>
</tr>
<tr>
<td>SHOULDER RECONDITIONING PROGRESSION</td>
<td></td>
</tr>
<tr>
<td>APPENDIX FOUR</td>
<td>219</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>APPENDIX FIVE</td>
<td>221</td>
</tr>
<tr>
<td>HUMAN MOTION ASSOCIATES HEALTH HISTORY</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>224</td>
</tr>
<tr>
<td>INDEX</td>
<td>226</td>
</tr>
</tbody>
</table>
CHAPTER TWO

A THREE-DIMENSIONAL JOINT-BY-JOINT APPROACH TO MOVEMENT

“We work because it is a chain reaction, each subject leads to the next.”
— CHARLES EAMES

A concept recently permeated the fitness, sports performance, and rehabilitation fields describing the body and its movement as a series of alternating joint levels of mobility-stability-mobility patterns. This systematized arrangement of movement idea is good, but the common description of it was incomplete. The simplistic version looked at motion in one dimension, when in reality every muscle and joint works in three planes of motion. There must be an adequate range of motion in all three planes to allow an efficient, economical, and successful chain reaction of synchronized movement.

In this section, we will discuss the principles and concepts of movement, expression of relative motion of joints, basic foot mechanics, and will then delve into the lower extremity, knee, and hip. Later, we will explore the complexity of the lumbar and thoracic spine and of the shoulder girdle.

DISTAL AND PROXIMAL

First, we need to set the premise for our discussion. As covered in the previous chapter, we describe “movement” as the relationship of bone segments that comprise the joints. When discussing motion away from the spine, we look at the position of the distal bone in relation to the proximal bone.

Our discussion will begin at the foot, move through the subtalar joint, and proceed up the chain to the cervical spine. However, let’s take a few minutes to make sure the concepts of distal and proximal are clear.

For example, in Photo 2.1 we see the open-chain position of hip adduction with the femur medial to the ilium. In Photo 2.2, we also see the closed-chain, integrated position of hip adduction, even though the foot is not moving in space the way it is in an open-chain action.

In July 2002, the late Dr. Mel Siff wrote an article for PTontheNET called “Closed Versus Open Kinetic Chain Exercise.” In the article, he quoted Dr. Arthur Steindler, who coined the terms “open and closed kinetic chain.”

“We designate an open kinetic chain a combination in which the terminal joint is free. A closed kinetic chain, on the other hand, is one in which the terminal joint meets with some considerable external resistance which prohibits or restrains its free motion.” ~ Kinesiology of the Human Body under Normal and Pathological Conditions, Springfield, 1955

For the rest of the article, visit: http://www.ptonthenet.com/articles/Closed-Versus-Open-Kinetic-Chain-Exercise-1692

In actuality, integrated human movements are a constant alternation of open and closed chain events that produce efficient outcomes of a desired task.
In both pictures, the femur—the distal bone—is medial or adducted to the proximal bone, the ilium. For the sake of consistency, “distal” references any point below a point of attachment. In this case, the femur is below the ilium.

“Medial” refers to any point closer to the midline from a referenced starting point. Here, the femur is closer to the midline of the body as related to the ilium.

In the spine, however, the description of “spinal movement” is the proximal bone in relation to the distal bone.

In Photo 2.3, we see rotation of the cervical spine to the left with the chin somewhat over the left shoulder. The proximal segments of the cervical spine are rotated farther left than the distal cervical segments.

When viewing the integrated action as shown in Photo 2.4, there is still left cervical rotation even though the body is rotated right—the proximal cervical segments are left of the distal segments.
In Photo 2.4, the lower segment of the cervical spine and the thoracic spine are rotated right. However, the proximal segments are rotated to the relative left to the distal segments. Therefore, this is still left cervical rotation.

UNDERSTANDING THE SYNERGISTIC RELATIONSHIP FOR MOVEMENT EFFICIENCY

Historically, the majority of exercise training programs have been created in an isolated environment, such as machines in a gym. There are benefits to isolation in training, such as hypertrophy development or to increase isolated strength. These issues are necessary, especially considering a person who is rehabilitating an injury or a postsurgical issue.

However, when we use an isolated movement pattern, it is concentric in nature, in one plane of motion, and is isolated. You can readily see this as opposite of how the body actually moves as described in the earlier section, *Characteristics of Human Motion* beginning on page 14.

Functional, efficient movement is eccentric before concentric, is a tri-plane action, and integrated for successful movement. It is not isolated.

Next, you will see a diagram showing the integrated, synergistic reactions that occur in normal, healthy movements when loading the musculoskeletal system. As you can see, all joints move in three planes of motion. This is the roadmap to keep in mind as you observe a person’s gait or during a motion analysis. It is a roadmap you can use to create an environment for a client’s success, as these reactions must transpire to allow optimal, efficient motion.

There must be adequate range of motion in all three planes to allow an efficient, economical, and successful chain reaction of synchronized movement. There is a predominance of a particular plane of motion in each joint. However, we still expect the presence of the other two cardinal planes of motion during any integrated, functional movement.

For example, the knee moves predominantly in the sagittal plane. But, consider again the principle of motion away from the spine, where movement is defined as the
distal bone in relation to the proximal bone. Under normal, healthy conditions, as the knee flexes, the tibia internally rotates, resulting in knee internal rotation. Likewise, as the knee flexes and rotates, the distal end of the tibia is usually lateral to the distal end of the femur. Under these movement principles, the knee is abducted when considering the distal bone in relation to the proximal bone.

Figure 1.1 shows the concomitant tri-plane actions that occur at each joint, as well as the necessary reactions that must transpire to make all joints and movements successful. Notice how the knee flexes in the sagittal plane, abducts in the frontal plane, and internally rotates in the transverse plane. The majority of anatomy and kinesiology books do not discuss these reactions; they only discuss knee flexion. Take a few minutes to ponder this concept if it is new to you.

Many reactions occur in other regions of the body to allow the knee to have efficient motion. For example, the ankle must dorsiflex for the knee to flex, abduct, and internally rotate in normal actions.

To get a feel of this, please stand and perform a squat, paying close attention to ankle dorsiflexion. If you have good ankle dorsiflexion, the knee will track somewhere close to over the shoelaces. If you have the ability to achieve this necessary function of the ankle, you should feel a smooth squat action.

Now, attempt the squat again, but this time do not dorsiflex the ankle and do not allow the knee to track over your shoelaces. Most often, people feel awkward and may lose balance; they feel the weight more toward the heels, feel more quadriceps recruitment, and—the biggest compensation—they flex more at the hip. Some feel tension in the low back.

Many people who have had a previous ankle, foot, or calf injury who squat or lunge in this manner are at risk of hip, knee, low back, or sacroiliac joint dysfunction or even injury. We will discuss this in more depth when we explore common limitations, compensations, and injury, beginning on page 137.

Referring back to the earlier movement illustration in Figure 1.1, you will see the necessary chain reaction for optimal performance, whatever that may be:

- Adequate ankle dorsiflexion must be accompanied by adequate subtalar joint eversion and forefoot abduction to allow the tibia to internally rotate.
- This causes the knee to internally rotate, abduct, and flex.
- With this successful reaction, the femur will follow the tibia and rotate inward.
- As the knee is abducted, it “pulls” the femur, thereby causing the femur to be medial to the ilium.
- Following the principle of distal bone in relation to the proximal bone, the femur is now adducted to the ilium, resulting in hip adduction.
- Likewise, as the femur moves slightly forward of the ilium, the hip is flexed in the sagittal plane.
- As a result, a successful hip action loads the gluteal complex in three planes of motion. The hip is flexed in the sagittal plane, adducted in the frontal plane, and internally rotated in the transverse plane.

We started this global journey from the foot and ankle complex, through the knee and into the hip. If any component becomes locally limited in motion, it will impact successful global reactions.

Remember, if there is a limitation, it will create a compensation. Compensation often results in an injury or a dysfunctional issue, but that typically is not the cause of the problem. It is quite possible—and common—to see the cause of a dysfunction be one or two joint levels away from the site of the compensation or injury.

Therefore, we must look globally prior to looking locally to understand and assess the cause of a problem.
That movement graphic looks complex. To make it more understandable, get in front of a mirror and follow the illustration as you start moving in all planes of motion. Stop in a different position after each movement to analyze each of your joint positions and look at the relationship of the distal bone to the proximal bone.

Once you have internalized these concepts, you will begin to more fully appreciate human movement and be better able to unravel the complexities of each motion. When you understand how the body moves and where the motion is limited rather than where it should be coming from, the possibilities of working with and training clients become endless.

We will expand our explorations into the movement of various regions as we delve into each specific area.
MUSCLES OF THE FEET

There is no more of a synergistic nature of muscle tissue than in the foot. The 24 muscles are listed below with the origin and insertion. You will find frequent discussion of the four components of foot function throughout the book.

The loading or pronation is the deceleration phase, when all tissues lengthen to absorb force during calcaneal eversion and forefoot abduction. The transition from pronation to the acceleration or supination phase is when the muscles shorten to lock or close-pack the bones to create a more rigid environment for propulsion.

The following are the muscles affecting foot function.

- Flexor Digitorum Brevis
- Abductor Hallucis
- Abductor Digiti Minimi
- Flexor Hallucis Longus
- Flexor Digitorum Longus
- Extensor Digitorum Brevis
- Extensor Hallucis Longus
- Extensor Digitorum Longus

PHOTO 3.1 THE FOOT
Flexor Digitorum Brevis

<table>
<thead>
<tr>
<th>Functional Action</th>
<th>Phase 1: Deceleration</th>
<th>Phase 2: Transition</th>
<th>Phase 3: Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal Plane</td>
<td>Assists with deceleration of extension of toes two through four from heel strike through toe-off</td>
<td>Foot stabilization</td>
<td>Assists with acceleration of plantar flexion of toes two through four. However, think in terms of relative flexion of the toes prior to heel-off when they begin with deceleration of extension through toe-off.</td>
</tr>
<tr>
<td>Frontal Plane</td>
<td>Foot stabilization in functional activities</td>
<td>Foot stabilization in functional activities</td>
<td>Foot stabilization in functional activities</td>
</tr>
<tr>
<td>Transverse Plane</td>
<td>Foot stabilization in functional activities</td>
<td>Foot stabilization in functional activities</td>
<td>Foot stabilization in functional activities</td>
</tr>
</tbody>
</table>

Origin
Medial aspect of calcaneal tuberosity and deep surface of the plantar aponeurosis

Insertion
Middle phalanx behind flexor digitorum longus

By the Book
Flexion of toes two through four

Abductor Hallucis

<table>
<thead>
<tr>
<th>Functional Action</th>
<th>Phase 1: Deceleration</th>
<th>Phase 2: Transition</th>
<th>Phase 3: Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal Plane</td>
<td>Assists with deceleration of the first metatarsophalange (MTP)</td>
<td>Synergistically assists with great toe stabilization</td>
<td>Assists with deceleration of great toe flexion during heel-off through toe-off</td>
</tr>
<tr>
<td>Frontal Plane</td>
<td>Deceleration of great toe adduction of the first MTP</td>
<td>Synergistically assists with first MTP stabilization</td>
<td>Assists with acceleration of first MTP flexion and abduction during heel-off through toe-off</td>
</tr>
<tr>
<td>Transverse Plane</td>
<td>Synergistically assists with first MTP stabilization</td>
<td>Synergistically assists with first MTP stabilization</td>
<td>Synergistically assists with first MTP stabilization during heel-off through toe-off</td>
</tr>
</tbody>
</table>

Origin
Flexor retinaculum, medial aspect of calcaneal tuberosity, and deep surface of the plantar aponeurosis

Insertion
Medial side of proximal phalanx of the first toe and medial sesamoid bone of the great toe

By the Book
Flexion and abduction of the first MTP
ABDUCTOR DIGITI MINIMI

<table>
<thead>
<tr>
<th>FUNCTIONAL ACTION</th>
<th>PHASE 1: DECELERATION</th>
<th>PHASE 2: TRANSITION</th>
<th>PHASE 3: ACCELERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGITTAL PLANE</td>
<td>Assists with deceleration of fifth toe extension</td>
<td>Assists with fifth toe stability</td>
<td>Assists with acceleration of fifth toe relative flexion after toe-off</td>
</tr>
<tr>
<td>FRONTAL PLANE</td>
<td>Assists with fifth toe adduction</td>
<td>Assists with fifth toe stability</td>
<td>Assists with fifth toe abduction from heel-off through toe-off</td>
</tr>
<tr>
<td>TRANSVERSE PLANE</td>
<td>Dynamic stabilization of the fifth toe</td>
<td>Dynamic stabilization of the fifth toe</td>
<td>Dynamic stabilization of the fifth toe</td>
</tr>
</tbody>
</table>

ORIGIN
Inferior calcaneus

INSERTION
Lateral side of the fifth MTP

BY THE BOOK
Flexion and abduction of the fifth MTP

FLEXOR HALLUCIS LONGUS

<table>
<thead>
<tr>
<th>FUNCTIONAL ACTION</th>
<th>PHASE 1: DECELERATION</th>
<th>PHASE 2: TRANSITION</th>
<th>PHASE 3: ACCELERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGITTAL PLANE</td>
<td>Assists with deceleration of great toe extension and ankle eversion at heel strike to mid-stance</td>
<td>Great toe and ankle stability during mid-stance</td>
<td>Assists with deceleration of great toe extension and ankle eversion during heel-off and toe-off</td>
</tr>
<tr>
<td>FRONTAL PLANE</td>
<td>Assists with great toe and foot stability during the entire gait cycle</td>
<td>Assists with great toe and foot stability during mid-stance</td>
<td>Assists with great toe and foot stability</td>
</tr>
<tr>
<td>TRANSVERSE PLANE</td>
<td>Assists with great toe and foot stability during the entire gait cycle</td>
<td>Assists with great toe and foot stability during mid-stance</td>
<td>Assists with great toe and foot stability</td>
</tr>
</tbody>
</table>

ORIGIN
Mid-posterior half of fibula

INSERTION
Distal phalanx of the first MTP on the plantar surface

BY THE BOOK
Assists in first toe flexion and foot and ankle inversion
FLEXOR DIGITORUM LONGUS

<table>
<thead>
<tr>
<th>FUNCTIONAL ACTION</th>
<th>PHASE 1: DECELERATION</th>
<th>PHASE 2: TRANSITION</th>
<th>PHASE 3: ACCELERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGITTAL PLANE</td>
<td>Assists with deceleration of the four lesser toes as the toes reach the ground during heel strike to mid-stance</td>
<td>Synergistically assists with the four lesser toe stabilization</td>
<td>Assists with acceleration of flexion of the four lesser toes</td>
</tr>
<tr>
<td>FRONTAL PLANE</td>
<td>Assists in deceleration of ankle eversion during heel strike to mid-stance</td>
<td>Foot and ankle stability</td>
<td>Foot and ankle inversion and stability</td>
</tr>
<tr>
<td>TRANSVERSE PLANE</td>
<td>Foot and ankle stability</td>
<td>Foot and ankle stability</td>
<td>Foot and ankle stability</td>
</tr>
</tbody>
</table>

ORIGIN
Posterior middle tibia

INSERTION
Distal plantar surface of the lesser four toes

BY THE BOOK
Flexion of the four lesser toes and ankle inversion

EXTENSOR DIGITORUM BREVIS

<table>
<thead>
<tr>
<th>FUNCTIONAL ACTION</th>
<th>PHASE 1: DECELERATION</th>
<th>PHASE 2: TRANSITION</th>
<th>PHASE 3: ACCELERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGITTAL PLANE</td>
<td>Assists with deceleration of flexion of MTPs two through four</td>
<td>Synergistically assists with stabilization of MTPs two through four</td>
<td>Assists with acceleration of extension of MTPs two through four at heel strike</td>
</tr>
<tr>
<td>FRONTAL PLANE</td>
<td>Dynamic stabilization of MTPs two through four and assists with deceleration of ankle inversion</td>
<td>Dynamic stabilization of MTPs two through four</td>
<td>Dynamic stabilization of MTPs two through four</td>
</tr>
<tr>
<td>TRANSVERSE PLANE</td>
<td>Dynamic stabilization of MTPs two through four</td>
<td>Dynamic stabilization of MTPs two through four</td>
<td>Dynamic stabilization of MTPs two through four</td>
</tr>
</tbody>
</table>

ORIGIN
Dorsal aspect of calcaneus

INSERTION
MTPs two through four

BY THE BOOK
Extension of MTPs two through four
Extensor Hallucis Longus

<table>
<thead>
<tr>
<th>Functional Action</th>
<th>Phase 1: Deceleration</th>
<th>Phase 2: Transition</th>
<th>Phase 3: Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal Plane</td>
<td>Assists with deceleration of first MTP extension and ankle plantar flexion</td>
<td>Synergistically assists with first MTP stabilization</td>
<td>Assists with deceleration of first MTP flexion at mid-stance prior to heel-off and toe-off</td>
</tr>
<tr>
<td>Frontal Plane</td>
<td>Assists in deceleration of ankle eversion</td>
<td>Synergistically assists in first MTP stabilization</td>
<td>Assists in deceleration of ankle inversion</td>
</tr>
<tr>
<td>Transverse Plane</td>
<td>Synergistically assists in first MTP stabilization</td>
<td>Synergistically assists in first MTP stabilization</td>
<td>Synergistically assists in first MTP stabilization</td>
</tr>
</tbody>
</table>

- **Origin**: Anterior fibula and interosseus membrane
- **Insertion**: Dorsal surface of distal phalanx of the first MTP
- **By the Book**: First MTP extension, ankle inversion, and ankle dorsiflexion

Extensor Digitorum Longus

<table>
<thead>
<tr>
<th>Functional Action</th>
<th>Phase 1: Deceleration</th>
<th>Phase 2: Transition</th>
<th>Phase 3: Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal Plane</td>
<td>Assists with deceleration of flexion of MTPs two through five</td>
<td>Synergistically assists with stabilization of MTPs two through four</td>
<td>Assists with deceleration of flexion of MTPs two through four</td>
</tr>
<tr>
<td>Frontal Plane</td>
<td>Dynamic stabilization of MTPs two through five</td>
<td>Dynamic stabilization of MTPs two through five</td>
<td>Assists in deceleration of ankle inversion</td>
</tr>
<tr>
<td>Transverse Plane</td>
<td>Dynamic stabilization of MTPs two through five</td>
<td>Dynamic stabilization of MTPs two through five</td>
<td>Dynamic stabilization of MTPs two through five</td>
</tr>
</tbody>
</table>

- **Origin**: Lateral tibial condyle, proximal fibula
- **Insertion**: Lateral four lesser toes
- **By the Book**: Extension of MTPs two through five and assists in ankle eversion
You will see the term “Big Movement Rocks” often in this book. These consist of the foot and ankle complex, the hips, and the thoracic spine.

Human movement is the culmination of a cascade of tri-plane motions resulting in a desired outcome whatever that may be. Efficient motion of the Big Movement Rocks improves efficiency of motion and will reduce the risk of injury.

Depending on which resources are cited, the top three injuries affecting people are low-back injury or pain, knee injury, followed by shoulder injury. My experiences over the last 37 years of practice have shown that repeated incidence of improper motion in the Big Movement Rocks significantly contributes to overuse and chronic injuries. Working closely with Dr. Robert Masson of the Neurospine Institute, I have seen many of his patients exhibit similar tendencies in movement. After evaluating their results from a gait-and-motion analysis, invariably we find tightness in the hips and thoracic spine in one or more planes of motion.

Anatomy shows us that the low back is “stuck” between the hips and thoracic spine. Chapter Two, A Three-Dimensional Joint-by-Joint Approach to Movement beginning on page 21, taught us that the hips are greatly affected by the foot and ankle complex and must be included within the scope of our assessments.

The knee is a victim of the foot and ankle complex and the hip. The tibia is greatly impacted by foot function and the femur is affected by hip motion, and so we see how the knee reacts to the structures above and below it. When people present with knee problems, the last place we look is the knee—we first assess the movement of the Big Movement Rocks below and above it.

The shoulder girdle involves the humerus, glenoid, clavicle, scapula, and thoracic spine. The scapula must glide over the ribs to provide proper and efficient movement of the shoulder joint. And the thoracic spine must move freely in all three planes of motion, especially in the transverse plane. If the thoracic spine has ample motion, the scapula will spontaneously glide over the ribs to allow the shoulder joint to function effectively.

However, the thoracic spine depends on freedom of motion in the hip complex, which is impacted by the foot and ankle actions. When viewing human movement, especially of a local joint, first look globally to get a perspective of gross overall tri-plane motion. Then move your assessment to the local joint action.

THE FOOT AND ANKLE COMPLEX

Often referred to as a mobile adapter, the foot must be able to absorb forces from gravity and ground-reaction forces when moving forward and back, side to side, and in rotation. It must be able to do these actions on firm, soft, level, and unleveled surfaces, as well as on a combination.
There is a predominance of one plane of motion in certain regions of the foot, yet those regions must have a subtle action of the other two planes of motion within them.

For example, the talocrural (ankle) joint is said to be primarily a sagittal-plane mover. As the tibia moves over the talus, the motion is in the sagittal plane. However, when the foot hits the ground, contact with the ground is usually at the lateral aspect of the calcaneus.

As the ankle plantarflexes and the foot lowers to the ground, the calcaneus everts five to seven degrees, resulting in a relative rotational movement of the midfoot and forefoot as the phalanges contact the ground. At this point, the tibia starts to rotate medially, as do the femur and hip.

To envision this, imagine viewing the foot from above as seen in Figure 6.1.

Picture a line across the talus and have that line bisect both malleoli. Now add a line from the instep to a point between the fourth and fifth metatarsal bones. This represents an axis that passes through the talus at a 16-degree angle. This axis relates to the motion of the forefoot to the rearfoot when the foot is fully loaded in midstance.

The summation of ankle dorsiflexion in the sagittal plane, calcaneal eversion in the frontal plane, along with forefoot abduction through the transverse axis and tibia rotation in the transverse plane allows the foot and ankle complex to be loaded in three planes of motion.

For optimal foot and ankle function that will fully load the system, the following four components must occur:

- Calcaneal eversion
- Tibial internal rotation
- Ankle dorsiflexion
- Forefoot abduction

If any of these actions become limited, the entire system will be adversely affected and lack proper loading.

THE HIP COMPLEX

The hip complex is the conduit region that conjoins the lower extremities to the torso. It must possess mobility to ambulate in three planes of motion, along with stability to assist in absorbing and transmitting forces.

The hip is comprised of the spherical femoral head and the acetabulum. Often referred to as the body’s powerhouse, the hip contains the densest, most powerful muscles in the body. Thirty-three muscles attach to the hip complex; many of them exhibit the body’s highest power capacity. Among them are the gluteal complex, deep hip rotators such as the piriformis, gemellae and obturator groups, adductor group, and hamstrings to name those most commonly recognized.

Like all joints in the body, the hip moves in three planes of motion. In the sagittal plane, the flexion range of
motion is between 100 to 120 degrees and extension is 15 to 20 degrees.

In the frontal plane, abduction ranges from 40 to 45 degrees, while adduction is approximately 25 degrees.

In the transverse plane, internal rotation range of motion varies from 35 to 40 degrees, with external rotation of 40 to 50 degrees. In standing single-leg balance, we have observed nearly 90 degrees of external rotation.

In addition to the tri-plane range of motion, pay attention to the femoral glide that must occur for successful motion. When the hip extends, the head of the femur glides or slides forward toward the anterior. When the hip flexes, the femoral head slides posterior toward the back.

In frontal-plane motion, the femoral head slides laterally during adduction of the hip and glides medially during hip abduction.

In the transverse plane, the head of the femur rotates backward with internal rotation and rotates forward during external rotation motion.

When the hip joint gets tight, the femoral head becomes somewhat compressed in the acetabulum, resulting not only in joint compression, but also with reduced range of motion in all three planes. Therefore, when stretching the hips in three planes, you will be more successful when applying a gentle, long axis distraction, pulling the distal bone from the proximal bone.

Considering the hip structure and its important role of force transmission, the mobility of the hip is critical for successful and efficient movement patterns. People with back pain invariably have a limitation of hip function within one and most often all three planes of motion.

The close relationship of the hip complex with the lumbo-pelvic complex greatly impacts the functioning of the lumbar spine. When the hip is limited, especially in the transverse and frontal planes, the lumbar spine compensates in these planes of motion. Over time, back injury to this region follows.

In static posture, anterior pelvic tilt alignment will influence the lumbar spine by increasing lordosis. Likewise, posterior pelvic tilt causes flexion of the lumbar spine. However, the lumbar spine can also influence pelvic tilt alignment, with increased lordosis causing anterior pelvic tilt and lumbar flexion often resulting in posterior pelvic tilt.

These issues need to be correlated to your strategies of corrective exercise when developing programs. For example, if a client has an anterior pelvic tilt with increased lordosis, you need to use caution when doing squats or spinal extension movements. The rationale is that the facets of L5/S1 are closer together than in a more neutral position lumbo-pelvic complex. When squatting or moving into an extended spinal movement, the facets may compress, causing discomfort.

A lunge program is an alternative to the squat in this situation, as the hip of the forward leg will move into a posterior position while the hip of the trail leg extends. In the majority of cases, this reduces the compressive force on the L5/S1 facets. The client will be able to work the legs and hips with more comfort and efficiency.

The interesting cascade reactions of the foot have significant impact upon the hips. These principles will be discussed further throughout this book.

The hip complex is a crucial big movement rock based on the alignment and proper motion of the hips, critical function of force transmission and mitigation, and the interrelationship with the lumbar spine.

THE THORACIC SPINE

Tri-plane motion of the thoracic spine is critical for successful and efficient movement. The span of 12 thoracic levels lends itself to be mobile in three planes of motion. The excellent book, *Low Back Disorder* by Stuart McGill, PhD, demonstrates the vast range of motion in all three planes. Cumulatively at all 12 levels, the thoracic spine averages 76 degrees in the sagittal plane of combined flexion and extension. In the frontal plane, the average range of cumulative motion is 78 degrees. In the transverse plane, the average is 74 degrees of combined left and right rotation.
Compare these ranges to the lumbar spine that totals 68 degrees of combined flexion and extension, 29 degrees of frontal plane motion, and 13 to 15 degrees in each direction of rotation.

The primary difference in the range of motion is due to the articulating facet structures of each region. The thoracic spine facets face more posterior and allow the ribs to have greater freedom of movement. The lumbar facets are aligned more obliquely and limit the movement in the transverse plane. Please refer to Figure 6.2 comparing the differences of the facet angulations between the thoracic and lumbar vertebra.

![Figure 6.2 Thoracic and Lumbar Facet Angulations](photo-copyright-3d4medical)

Figure 6.3 demonstrates the difference in articulation with adjacent vertebra in each region.

The thoracic spine simultaneously functions in three planes of motion. For example, when rotating to the right, the right transverse process moves posteriorly in the sagittal plane, while the vertebral body is rotating right in the transverse plane. This is often referred to as a “coupling effect.” However, in many cases there is a slight lateral flexion to the side; therefore, the frontal plane is impacted and movement is occurring in three planes of motion.

![Figure 6.3 Vertebral Articulation](photo-copyright-3d4medical)

There is greater motion in the upper thoracic spine from T1–T8 in the transverse plane. Farther down toward the lumbar spine, especially from T9–T12, the rotation becomes less as it approaches the thoracolumbar region. As the thoracic spine becomes more distal, the lumbar spine will influence it—it has less rotation, similar to the lumbar spine. The lumbar spine is conducive to flexion and extension, and the thoracic spine has more range of motion from T10–T12 than the level above it.

Frontal-plane motion is fairly consistent through the entire thoracic spine, as it is in the lumbar spine.

The articulation of the scapula with the thoracic spine is critical for healthy shoulder girdle and shoulder joint
action. There must be good mobility in the thoracic spine to allow scapular gliding over the ribs. This will enhance shoulder-joint mobility and create an environment for healthy shoulder movements.

SUCCESSFUL MOVEMENT DEPENDS ON THE BIG MOVEMENT ROCKS

Throughout this book, we will continue to discuss the Big Movement Rocks and their dependency on each other for successful movement. The synergistic cascade of reactions is necessary to allow a successful environment for efficient movement. If any part of these reactions becomes limited in motion, the entire system is affected and compensatory movement patterns will contribute to complete the task.
APPENDIX ONE

OVERVIEW OF THE SIX FLEXIBILITY HIGHWAYS

THE ANTERIOR FLEXIBILITY HIGHWAY

KEY INTERSECTIONS

- Anterior tibialis to distal quads
- Proximal quads to distal hip flexor
- Proximal hip flexor to distal abdominals
- Proximal abdominals to distal pectorals
- Proximal pectorals to distal delts
- Opposite obliques to opposite shoulder

STRETCHING THE ANTERIOR FLEXIBILITY HIGHWAY

The Anterior Flexibility Highway runs from the south to the north—the bottom to the top of the body—or along the sagittal plane with flexion and extension movements occurring on this Highway.

The myofascial tissues of this Highway begin at the dorsal surface of the foot with the toe extensors, and interchange with the anterior compartment of the ankle and tibia. This runs from the anterior tibialis north, connecting to the distal quadriceps near the patellar tendon.

The next interchange north is the patellar tendon and the quadriceps attachment northward to the hip flexors. To enhance function of both the quadriceps and hip flexors, it is important to lengthen both structures together.

The hip flexors intersect with the abdominals that travel to the ribs, sternum, and the sternochondral fascia, and venture into the pectorals, anterior shoulder, and the sternocleidomastoid.
From there, an angular detour takes our journey to the mastoid process of the Anterior Flexibility Highway, which enhances extension moments.

POSTERIOR FLEXIBILITY HIGHWAY

KEY INTERSECTIONS

- Plantar fascia to calcaneus to Achilles
- Posterior calf to distal hams
- Proximal hams to distal glutes
- Proximal glutes to distal erector spinae
- Opposite glutes and lats
- Distal erector spinae to occipital to epicranial fascia

The Posterior Flexibility Highway runs from the south to the north or along the sagittal plane with flexion movements occurring on this highway. The myofascia of this highway begins at the plantar surface of the foot from the toe flexors, moves through the posterior compartment of the ankle, and meets at the Achilles tendon. Through the posterior calf group of the gastrocnemius, soleus, and posterior tibialis northward, the knee interchange meets the hamstrings.

The gastrocnemius attaches at the femoral condyles and conjoins with the descending hamstrings that attach at the tibial condyles. In fact, the gastrocnemius and hamstrings connect with each other, forming the “trapeze artists of the body.”

The hamstrings attach below and around the knee on the tibial condyles. The hamstrings run north, attaching at the ischial tuberosity, and merging into the sacrotuberous ligament. In this region, a major interchange emerges as the sacrotuberous ligament meets the lumbosacral fascia,
and passes into the gluteal complex, as well as the erector spinae.

The erector group travels north to connect with the occiput and conjoins with the epicranial fascia to the forehead.

It is important to stretch the union of the gluteals and the erector spinae musculature in an integrated fashion, as any functional lumbar movement pattern includes the gluteals. The relationship of these structures should be developed together.

The final posterior journey terminates at the scalp fascia.

LATERAL FLEXIBILITY HIGHWAY

The Lateral Flexibility Highway is commonly overlooked in discussions on function. The Lateral Flexibility Highway runs from the south to the north along the frontal plane with abduction and adduction movements occurring along this line.

Running from the lateral ankle and the peroneal group, the Lateral Highway goes north to the lateral tibial condyle and the iliotibial band. Moving upward from this taut structure, the IT band merges with the tensor fascia lata, the gluteus medius and minimus, and then meets with the gluteus maximus.

When analyzing the multidirectional fibrous “routes” of the gluteal complex, we know to include these sections of the Highways with all Flexibility Highway stretching. The gluteals are the “command central” of our center of gravity, balance, and power. They are used in all functional movement patterns, and thus are the hub of tri-plane movement patterns.

Along the Lateral Flexibility Highway, the lateral gluteals are adjacent to the QL and then the obliques.
The obliques merge with the external and internal intercostals toward the anterior aspect and the latissimus dorsi in the posterior aspect. Additionally, these structures are close neighbors to the transverse abdominis by way of fascial anatomy.

From this point north, the lats will meet up with the posterior rotator cuff. There is a bypass at the junction of the latissimus dorsi and the trapezius group, whereby the journey northbound traverses through the trapezius group to the sternocleidomastoid.

THE ANTERIOR X-FACTOR

- Opposite adductor to pubic ramus
- Pubic ramus to opposite obliques
- Obliques to serratus anterior to pectorals
- Pectorals to the shoulder

STRETCHING THE ANTERIOR X-FACTOR

All motions involving rotation and extension run along the Anterior X-Factor (AXF). When viewing the anatomy of the adductors to the opposite pectoral and shoulder region, there is a somewhat parallel line along these tissues. This Flexibility Highway runs from the adductor insertion on the linea aspera on the posterior femur and originates at the pubic ramus on the pelvis.

At this point, there is a close fascial relationship between the origin of the adductors to the rectus abdominis as it traverses along the abdominals to the opposite intercostals and obliques, upward to the serratus anterior, into the pectorals, and into the opposite shoulder complex. Therefore, any motion that involves extension and rotation of the opposite side runs along the AXF.

Additionally, when we abduct and extend an arm, similar to a throwing motion or a golfer's backswing, the tissue from the deltoid into the biceps and forearm is included in the AXF.
It is crucial to possess ample mobility in the adductors, abdominals, and pectoral regions to enhance motions through the AXF.

Likewise, it is important to maintain good range of motion in the hamstrings, as these tissues are the neighbor of the adductors, and highly affect them.

POSTERIOR X-FACTOR

As you view the posterior architecture of the soft tissue, the Posterior X-Factor (PXF), notice the nearly parallel line between the opposite gluteal complex and the latissimus dorsi. Both tissues entwine into the lumbosacral fascia, thereby joining the opposite hip and shoulder.

The importance of the PXF comes into play during flexion and rotational actions, such as the follow-through in a throw, the backswing during a golf swing, tennis swing follow-through, or simply picking up an object within reach and lateral to you.

KEY INTERSECTIONS

- Calf to hamstrings
- Hamstrings to gluteals to sacrotuberous ligament to lumbar fascia
- Lumbar fascia to opposite latissimus dorsi to the shoulder
KEY INTERSECTIONS

- Scalenes and cervicis capitis to the opposite rhomboid
- Rhomboid to subscapularis to serratus anterior
- Serratus anterior to external oblique to the opposite hip

STRETCHING THE TURNPIKE

This unique Highway system forms a relationship with the cervical spine and the hip via the opposite shoulder girdle. Running from the opposite scalene and capitis cervicis, these tissues conjoin with the rhomboids on the same side. The rhomboids attach to both scapulae, but due to the angulation of the rhomboid, these tissues attach to the opposite scapula. The rhomboid runs laterally to connect with the subscapularis approximately one-third from the medial border.

The subscapularis travels laterally to merge with the serratus anterior about 20 percent from the lateral border. The serratus anterior wraps around the side of the body, connecting with the pectorals and external obliques.

The external oblique runs on an angle toward the linea alba of the rectus abdominis to the opposite hip. This “turnpike” creates the indirect attachment from the same-side posterior cervical spine to the opposite shoulder, and diagonally back to the same-side hip on the anterior side.
Index

4Q Model 166-167
4-Quadrant System 159, 166-167

A

abdominal complex
 functional anatomy 52
 optimal function 143
abductor complex 145
abductor digit minimi, functional anatomy 29, 31
abductor hallucis, functional anatomy 29-30
abductors, functional anatomy 47
Achilles tendon pain, toe raises and 150
acromion process
 supraspinatus tendon impingement 69, 85, 146
Action Pyramid, The
 layers of 118
 Function Layer 118
 Fitness Layer 120
 Skill Layer 120
 Technique Layer 122
 integrated movements in 162
 joint flexibility in 163
 movement variability and 166
 stability work in 165
 traditional exercises in 161
ActivMotion® Bars 120, 167
adduction, hip 17
adductor group
 functional anatomy 45
 fiber alignment 145
 in gait 144
 tightness and stability, test for 133
Anatomy Trains 12, 95
angle of the joints of the cervical spine 89
ankle dorsiflexion
 isolated open-chain test 126
 limitation 143
 limitation and hip extension 97, 171
ankle joint
 and foot 18, 23
 affect on the knee 153
 injury related to sports hernia 154
 motion during gait 77
 primary plane of motion 142
 planes of motion 18, 23, 79, 112, 153
 motion during lunge 78
ankle mobe
 description of 175
 progressions of 176
 to regain function after injury 172
anterior cruciate ligament (ACL)
 knee capsule stretch 202
 progressions after surgery 200
 rearfoot control and 146
Anterior Flexibility Highway
 description of 97-99
 extension along 97
 key intersections 209
 stretching examples 209
 wall patterns with 162, 179
anterior lunge 149
anterior pelvic tilt
 assist from rectus abdominis 53
 Functional Testing Grid 132
 influence on lumbar spine 113
 related to hamstring tightness 149
 and hips 139
Anterior X-Factor
 description of 103-104
 key intersections 212
 stretching along 212
 with adductor emphasis 105
 crossover walk with 103, 139, 187
arm swing during gait 124

B

balance reach excursion test 129
Battling Ropes 120
Beacon of Life cue 90
biceps, functional anatomy 72
Big Movement Rocks 137
 description of 111
 evaluation of 119
 limitations and overuse issues 119, 203
 motion in gait 125
 and stand tall posture 155
bilateral arm reach, walking 124
biomechanical issues among seniors 137
Bompa, Tudor 163
bones of the foot 75, 151
Boyd, Richard 225
brachialis, functional anatomy 73
brachioradialis, functional anatomy 73
bridging, description of 174
 progressions of 183
Burton, Lee 123

C

Cailliet, Rene 76
calcaneal eversion 29
calcaneus, motion during lunge 76, 78
calf tightness, toe raises and 150
INDEX

Cappuccio, Bobby 225
Carey, Anthony 225
Carlssoo, Sven 123
cavus and planus foot, comparison of 152
cavus foot, description of 198
cervical rotation 17, 22, 88
cervical spine, relationship to thoracic and lumbar 89
cervicis lumborum, functional anatomy 57
Chaitow, Leon 159-160, 165
characteristics of functional human motion 14
chronic injury, percent of people with 137
clavicle
-assess tightness 202
-frontal plane abduction 88
closed chain actions 22-23
assessment, problems with 160
-vs open chain exercises 21
collagen 94
compensation 24, 138
-limited thoracic mobility 171
concentric actions 14, 23, 28
Cook, Gray 123, 225
Coopersmith, Geralynn 225
core
-definition of 163
-stabilization, exercise example 184
-strength, part of periodization program 163
Corn, Rodney 225
crossover walk
-description of 187
-variations of 188
-hurdle setup 188
-Posterior X-Factor example 189
cuboid 76
cueing
-Big Movement Rocks and 190
-“Move the scapula” 155
-“Shine the light” 90
-“Squat from the hips” 154
-“Squish the bug” 153
-“Stand tall” 154
-“Where the pelvis goes, the low back will follow” 155
cuneiforms 76

distal bone
-first, in motion 15
-in relation to the proximal bone 17, 21, 81-82, 141
Dolan, Shawn 137, 170
dorsiflexion
-see ankle dorsiflexion
Duggan, Robert 225
Dykyj, Daria 123

eccentric actions 15, 28
-see also concentric actions
elastin 94
Elfman, Daniel 123
energy systems, cross matching 120
erector spinae, functional anatomy and planes of motion 56
eversion, inversion and planes of motion 76-77
explosive tri-plane motion, problems with 154
extensor digitorum brevis, functional anatomy 29-32
extensor digitorum longus, functional anatomy 29, 33
extensor hallucis longus, functional anatomy 29, 33
external hip rotation, lunging and 194
external oblique, functional anatomy 54
extracellular matrix, movement remodeling 94-95
extrinsic vs intrinsic 27

fascia 93
-fibers, collagen 94
-gliding 93
-stimulation 95
-adaptation 160
-as stabilizer 164
Feitis, Rosemary 93
femur
-motion during lunge 78
-rotation and tight adductors 200
-rotation and knee pain 197
flexibility, controversy over 96
Flexibility Highways, The 104
-introduction to 95
-appendix overview 209
-stretching along 95-96
-use of in training 108
-and the 4Q Model 166
-see also Anterior Flexibility Highway 97
-see also Lateral Flexibility Highway 101
-see also Posterior Flexibility Highway 99
-see also X-Factors 103
-see also Turnpike, The 106
flexibility programming 96
flexor digitorum brevis, functional anatomy 29-30
flexor digitorum longus, functional anatomy 29, 32
flexor hallucis longus, functional anatomy 29, 31
foot and ankle complex
 motion of 77
 planes of motion 153
 part of the Big Movement Rocks 111
foot assessment 127
 great toe 129
 metatarsal joints 128
 subtalar joint 127
foot
 functional anatomy 29
 muscles of 29
 bones of 75, 151
 lack of mobility 201
 mechanics of 146
 mechanics during gait 142
 planes of motion 111
 transverse axis of 112
 relation to knee pain, assessment 197
 cavus vs planus 152
 flat, example of 199
 hamstring tightness and 79, 149-150
 injury related to sports hernia 154
forefoot 76
 abduction 29
frontal-plane lunge 144, 194
 functional test 133
functional anatomy, see also individual muscles 12, 27, 74
Functional Assessment, The 123
functional calf raise 151
Functional Movement Screen (FMS) 123
Functional Testing Grid
 anterior pelvic tilt 132
 lunge evaluation 133
 frontal plane lunge 133
 single-leg balance anterior reach 129
 single-leg balance internal and external rotation 131
 single-leg balance lateral reach 130
 thoracic spine rotation 133
 scapular motion 134
function, defining 11, 13

G

gait
 gait cycle 138
 analysis of 124
 sequence, front, rear and side 77
 foot mechanics during 76, 142-143
 speed of 125
 swing phase of 80
 adductors in 144
 lumbar position during 80, 82
 gait, continued...
 planes of motion during 77, 83
 analysis, part of a rehab program 14, 123, 171
 hip bail out 142
 internal rotation prior to heel off 141
 knee extension and 145, 200
 gastrocnemius, functional anatomy 37
 Gitlitz, Mickey and Hazel 224
 gluteal complex
 functional anatomy 47
 position during gait 79, 83
 tightness and stability, test for 133
 tightness related to knee 148
 gluteus maximus, functional anatomy 49
 glycosaminoglycans (GAGs) 94
 go opposite first 15
 Gray, Gary 18, 119, 123, 197, 205, 225
great toe
 foot assessment 129
 range of motion 151
 guarding 159

H

hamstrings
 functional anatomy 39
 tightness of 149, 150
 hip abduction with internal rotation 141
 hip, adduction 22, 79
 with internal rotation 141
 hip and knee reconditioning, sample program 215
 hip complex
 part of the Big Movement Rocks 111
 planes of motion 79, 112
 pelvic alignment 139
 tightness of 142, 145
 influences shoulder movement 85, 202
 inward rotation, relation to glutes 125
 lateral tightness 143
 limited extension 143
 mobility, tri-plane lunge for 193
 pain related to inability to pronate 153
 rotation, relation to leg bones 200
 hip flexors
 functional anatomy 50
 tightness and flexibility 96, 156
 tightness and toe raises 150
 Huijing, Peter 16
 Human Motion Associates 14, 123, 159
 hip and knee progression 215
 shoulder reconditioning program 217
 humeral head, glenoid and 146
 humerus, scapula will follow 155
 hypertrophy, when needed 161
I

iliacus, functional anatomy 50
iliocostalis, functional anatomy 57
iliotibial band (ITB)
 Lateral Flexibility Highway and 101
 tightness of 145, 150
impingement, shoulder 84
infraspinatus, functional anatomy 65
injury, site of vs joint above or below 93
Inman, Verne 123
integrated approach to training 12, 117
integrated human movement, impact of the foot 75
internal hip rotation 140
 lunging and 194
internal oblique, functional anatomy 55
Int’l Dance and Exercise Association (IDEA) 137, 156, 170, 225
intrinsic vs extrinsic 27
inversion and eversion of subtalar joint 127
isolated movement pattern 23
isolated, single-joint stretching 93, 156
isolation in training 16
isometric 28

J

Janda, Vladimir 160
Jobe and Hughston shoulder stabilizing exercises 164
Jobe, Frank 164
Joint-by-Joint Approach, the 21
joint degeneration, transverse plane loading 139
joint flexibility, part of periodization program 163
jumping, go opposite first 15

K

kinesthetic awareness, problems after back pain 172
kinetic chain
 open or closed 21
 compensation due to limitations 140
knee 18, 23
 function, successful actions 79
 planes of motion 78
 influenced by foot, ankle and hip 78-79, 147, 203
 stability vs mobility 78
 alignment examples 198
 in valgus position 147-148
 in varus position 148
 capsule tightness, example of stretch 201
 corrective exercise concepts 197
Korr, Irwin M. 165
kyphosis
 thoracic 139
 cervical 89

L

Lang, Annette 225
Latash, Mark 165
Lateral Flexibility Highway
 description of 101-103
 key intersections 211
 stretching along 211
 wall patterns and 101, 162, 181
 lateral shift 121
 lateral shuffle 121
 lateral stretch 102
latissimus dorsi, functional anatomy 59-60
 development vs thoracic rotation 87
learning style of clients 117
levator scapulae 61-62
Lewit, Karel 160
Liebenson, Craig 160
Lindstedt, Stan 15
long stride assessment 125
low back issues
 problems of 81
 pain, example of a golfer 147
 programming for 138, 169, 171
 rehab, 8-week program 172
 related to inability to pronate 153
lower extremity, loading of in gait 78
lower leg, function of 74
lumbar spine 81
lunge
 frontal plane 80, 194
 sagittal plane 199-200
 transverse plane 195
 tri-plane 193

M

Masson, Robert 7, 111, 123, 171, 224
McGill, Stuart 113, 171
metatarsal joints 76
 assessment of 128
 range of motion of 151
midfoot 76
Mitchell, Fred 160
mobility, regaining in tri-plane environment 95
motion analysis 124
 stride, reach and walking 124
 single-leg mini-squat 126
movement assessment 123
movement variability in programming 19, 159, 165
Mulligan belt, use after knee surgery 201
multifidus cervicis, functional anatomy 58
multifidus lumborum, functional anatomy 58
multifidus thoracis, functional anatomy 59
Muscle Energy Techniques (MET) 159-160, 165
muscle fibers, skeletal muscle description 94
Myers, Thomas 12, 95

N
navicular 76
Norman, Dawn 224

O
obliques, functional anatomy 54
O’Dwyer, Ian 225
open vs closed chain exercises 21-22
origin and insertions, muscles of the body 28
Osbahr, Daryl 123, 225
overuse injury issues 137

P
Parracino, Lenny 225
patella
tracking and improvement of 197, 200
tendonitis, related to inability to pronate 153
tendon pain, toe raises and 150
pectorals, functional anatomy 68
Peishel, Aprile 225
pelvic alignment, tilt 139
related to hamstring tightness 149
see also anterior or posterior tilt
pelvic girdle
fascial network in 101
position during gait 82
periodization
strategies 163
modern concepts 165
movement variability 165
Periodized Program Hybrid Models 163
peroneal group, functional anatomy 38
phalanges 76, 152
pivot toe touch, description 184
planes of motion around the joints 23, 28
during gait 81-83
planus foot
example of 198
compared with cavus foot 152
ACL and 146
plyometrics 167
Poirier, Chris 225
Posterior Flexibility Highway
description of 99-101
key intersections 210
flexion along 100
stretching along 210
wall patterns with 99, 139, 162, 180
posterior pelvic tilt 139
posterior tilt test 132
Posterior X-Factor
description of 104-106
key intersections 213
stretching along 106, 213
crossover walk example with 189
crossover walk with 140, 187
wall patterns and 181
Power Plate® 120
program design
overview of 159
goals of 117
phases of periodization 165
a 3-dimensional approach 90
low back rehab 8-week sample 172
special populations 169
Action Pyramid and 118
see also workout programming 118
pronation 29
see also foot
proprioception 19
proteoglycans 94
proximal bone first
in the spine 15
in relation to the distal bone 22, 81
segments to the distal bone segments 17, 82
psoas, functional anatomy 50
Pyramid, see Action Pyramid

Q
quadratus lumborum 50-51
angle of fibers 147
tightness and back pain 147
quadriceps 41
quadruped exercise
description and progressions 178-179

R
Ray, Michael 123, 225
rearfoot, action of 76, 152
reciprocal inhibition, agonist and antagonist relationships 160
rectus abdominis, functional anatomy 53
referral business, development of 170
relative bone position of the lower extremities 17
relative position of the spine 18
relative rotation 81, 82
reticulin 94
return-to-play phase, overview of 195
rhomboids, functional anatomy 61
Rolf, Ida 93
Root, Merton 123
S
	sagittal-plane lunge, example of 199-200
Salzman, Wally 224
SandBells® 120, 167
sarcomere 94
sartorius, functional anatomy 41-42
scapula
 anatomy of 84
 planes of motion 84
 elevation, protraction, depression, retraction 85, 139
 gliding assessment 202
 impingement 84
 influenced by hip movement 202
 pelvis relationship 84
 scapular motion, functional test 134
 protraction in flexed-forward posture 85
 retraction in extended hip posture 84
 scapular winging 69
 shoulder pain and 145
 relation to humerus 155
 thoracic relationship 84
 with humeral head, abduct and elevate 202
Schroeder, Jan 137, 170
Schultz, R. Louis 93
Schwartzberg, Randy 123, 225
serratus anterior, functional anatomy 69
Shine the light cue 90
shoulder complex
 functional anatomy 62
 stability vs mobility 84
 abduction 85
 adduction 86
 planes of motion 88
 relation to Big Movement Rocks 111, 145
 limited motion of 202
 relation to hip 85
 scapular impingement 84
 pain 145
 injury is global 202
 impingement, as related to serratus anterior 69
 reconditioning, sample program 217
Siff, Mel 21
Simms, Jessica 225
single-joint stretching 93, 156
single-leg balance
 anterior reach 129
 lateral reach 130
 internal and external rotation 131
Sled Dawgs 167
soleus, functional anatomy 36
Spark Motion 123
special-population programming 169
spine
 lumbar 81
 thoracic and lumbar facet angulations 114
 cervical spine, relationship to thoracic and lumbar 89
 position during gait 83
 rotation to left 22-23
 see also thoracic spine
sports hernia, relationship with foot or ankle injury 154
squat, example of varus and valgus 198-199
Squish the bug cue 153
stability 28
 optimal vs too stable 95, 159
 working in isolation 164
 development of, part of a periodization program 164
Stand tall cue 154
Steindler, Arthur 21
step-out, exercise description 184
sternoclavicular joint, tightness of 88
stretching
 planes of motion and 96
 shoulder and hip together 96
subscapularis, functional anatomy 64
subtalar joint 76
 foot assessment 127
supine hip lift, description of 174
 progressions 183
suprailiac, functional anatomy 50
supraspinatus, functional anatomy 63
 tendon pinching 84
swing leg, clearance in gait 153
T
talus 76
tendons and ligaments, strength of 163
tensor fascia lata (TFL)
 functional anatomy 43
 description of tightness 145
 weak glutes and foot issues 150
 stretching along the Lateral Flexibility Highway 101, 211
 as related to the X-Factors Highways 102
teres minor, functional anatomy 65-66
The low back will follow cue 90
thoracic spine
 planes of motion 113-114
 position during gait 82
 rotation, functional test 133
 lumbar spine influence upon 114
 part of the Big Movement Rocks 111
throwing, hip and shoulder motion during 87
throwing injuries 86
tibialis posterior, functional anatomy 35
tibia
 motion during a lunge 78
 rotation related to knee pain 197
toe raises, problems from 150
Total Gym® Functional Testing Grid
 see Functional Testing Grid
training, integrated vs traditional 117
training, with machines 19
transverse abdominis, functional anatomy 54-55
transverse axis of the foot 112
transverse-plane lunge, description of 195
trapeze artists of the body: gastrocnemius and hamstrings 99
trapezius, functional anatomy 59-60
triceps, functional anatomy 71
tri-plane actions 24
 reaction: hip, knee, ankle, foot 18, 23
 of the foot and ankle 119
 of the hip 79
 hamstrings stretch 101
 loading chain reaction 140, 143
 tri-plane lunge, description 193
TRX® Suspension Trainer 186
 lat pull and chest press 191
 single-leg balance 192
 warding patterns 192-193
Turnpike, The
 description of 106-108
 key intersections 214
 stretching along 214
 Type I stretch 107
 Type II stretch 108
U
 ulnar collateral ligament (UCL) injury, pitchers 87
 upper back, functional anatomy 61
 upper extremity, functional anatomy 70
V
 valgus knee, description 198
 see also knee
 Varma, Amit 123, 225
 varus knee, description 198
 vertebral articulation 114
 ViPR®
 progressions of 121
 in the Action Pyramid 120
 frontal-plane lunge with 144
 in the 4Q Model 166-167
W
 Wagner, Curtis 225
 wall banger
 introduction to 108-109
 description of 182
 in the Action Pyramid 161-162
 in the low back program 172, 182
 in the hip and knee program 215
 wall patterns
 description of 179
 different vectors of 161
 variations of 180-181
 in the low back program 172, 179-181
 in the hip and knee program 215
 in the shoulder reconditioning program 217
 warding patterns
 Description of 185
 Level One 182
 Level Two 186
 Level Three 192
 variations with TRX® 192-193
 in the shoulder reconditioning program 218
 weight transfer during gait 81
 where the pelvis goes 90
 Wolf, Adam 201, 224
 workout programming
 see program design
X
 X-Factors Flexibility Highways 103
 see also Anterior X-Factor
 see also Posterior X-Factor
 see also Turnpike, The
Z
 Z-lines in muscle tissue 94